已知:如图,△ABC中,AB=AC,BD、CE分别是AC、AB边上的高,连接DE. 求证:(1)△ABD≌△ACE; (2)四边形BCDE是等腰梯形.

问题描述:

已知:如图,△ABC中,AB=AC,BD、CE分别是AC、AB边上的高,连接DE.
求证:(1)△ABD≌△ACE;
(2)四边形BCDE是等腰梯形.

证明:(1)∵BD、CE分别是AC、AB边上的高
又∵∠A=∠A,AB=AC,
∴△ABD≌△ACE;
(2)由△ABD≌△ACE得AD=AE,则∠ADE=∠AED,
故∠ADE=

180°−∠A
2
. 
∵AB=AC得∠ABC=∠ACB,故∠ACB=
180°−∠A
2

∴∠ADE=∠ACB.
∴DE∥BC.
又∵AB-AE=AC-AD即BE=CD,
∴四边形BCDE是等腰梯形.