已知对称中心为坐标原点的椭圆C1与抛物线C2:x^2=4y有一个相同的焦点F1,直...已知对称中心为坐标原点的椭圆C1与抛物线C2:x^2=4y有一个相同的焦点F1,直线L:y=2x+m与抛物线C2只有一个公共点.(1)求直线L的方程.(2)若椭圆C1经过直线L的点P,当椭圆C1的离心率取得最大值时,求椭圆C1的方程及点P的坐标.

问题描述:

已知对称中心为坐标原点的椭圆C1与抛物线C2:x^2=4y有一个相同的焦点F1,直...
已知对称中心为坐标原点的椭圆C1与抛物线C2:x^2=4y有一个相同的焦点F1,直线L:y=2x+m与抛物线C2只有一个公共点.(1)求直线L的方程.(2)若椭圆C1经过直线L的点P,当椭圆C1的离心率取得最大值时,求椭圆C1的方程及点P的坐标.

抛物线C2:x^2=4y的焦点F1坐标为F1(0,1),所以椭圆C1中,c=1,焦点在y轴上。
又因为直线L:y=2x+m与抛物线C2只有一个公共点,所以x^2=4(2x+m)只有唯一解,
所以:64+16m=0,所以m=-4,
(1)直线L的方程为:y=2x-4.
(2)因为椭圆两焦点F1(0,1),F2(0,-1),且椭圆又过直线L上的点P,要使椭圆的离心率最大,只需PF1+PF2有最小值,只需求F2关于直线L的对称点F3到F1的距离即可。
易求F3(12/5,-11/5),所以直线F1F3方程为:y=-4/3x+1,
由两直线L与F1F3求交点P得:P(3/2,-1);椭圆C1中,2a=F1F3=4,所以a^2=4,b^2=4-1=3
,所以椭圆方程为y^2/4+x^2/3=1.

抛物线C2:x^2=4y的焦点F1坐标为F1(0,1),所以椭圆C1中,c=1,焦点在y轴上.又因为直线L:y=2x+m与抛物线C2只有一个公共点,所以x^2=4(2x+m)只有唯一解,所以:64+16m=0,所以m=-4,(1)直线L的方程为:y=2x-4.(2)因为椭圆两...