设椭圆C1:x^2/a^2+y^2/b^2=1(a>b>0)的左右焦点辨别是F1、F2,下顶点为A,线段OA的中点为B(O为坐标原点)若抛物线C2:y=x^2-1与y轴的交点为B,且经过F1、F2点.设M(0,-4/5),N为抛物线C2上的一动点,过点N做抛物线C2的切线交椭圆C1于P、Q两点,求三角形MPQ面积的最大值

问题描述:

设椭圆C1:x^2/a^2+y^2/b^2=1(a>b>0)的左右焦点辨别是F1、F2,下顶点为A,线段OA的中点为B(O为坐标原点)若抛物线C2:y=x^2-1与y轴的交点为B,且经过F1、F2点.设M(0,-4/5),N为抛物线C2上的一动点,过点N做抛物线C2的切线交椭圆C1于P、Q两点,求三角形MPQ面积的最大值