F1,F2为双曲线的焦点,过F2作垂直于x轴的直线交双曲线于P,且角PF1F2等于30度,求双曲线渐近线方程
问题描述:
F1,F2为双曲线的焦点,过F2作垂直于x轴的直线交双曲线于P,且角PF1F2等于30度,求双曲线渐近线方程
答
设F1 F2为双曲线x^2/a^2-y^2/b^2=1(a>o,b>o)的焦点,过F2作垂直于x轴的直线交双曲线于点p,且角P F1 F2等于30度,将x=c代入x²/a²-y²/b²=1--->|y|=b²/a ∠PF1F2=30°--->b²/a=(2c)tan30°...