已知F1 F2是椭圆x2/25+y2/16=1的两个焦点,P是椭圆上的一点,若△PF1F2的内切圆半径为1,则点P到x轴距离为如题 求教
问题描述:
已知F1 F2是椭圆x2/25+y2/16=1的两个焦点,P是椭圆上的一点,若△PF1F2的内切圆半径为1,则点P到x轴距离为
如题 求教
答
首先我们把这个三角形单拿出来,设内心为点A,然后三角形面积可以表示为三个三角形AF1F2、AF1P、AF2P面积的和,由于着三个三角形的高相同,都是内切圆半径,所以三角形PF1F2面积即为周长乘以内切圆半径除以2.又因为PF1+PF...