设P为三角形ABC所在平面内一点,且向量AP=1/5向量AB+2/5向量AC,则三角形ABP与三角形ABC的面积之比是多少

问题描述:

设P为三角形ABC所在平面内一点,且向量AP=1/5向量AB+2/5向量AC,则三角形ABP与三角形ABC的面积之比是多少

这样吧,设A在(0,0),B在(a,0),C在x轴上方令AB=a,AC=b,|AP|=l,角BCA=角A,于是有向量AC=b(cosA+i*sinA)于是l = 1/5*AB+ 2/5*AC = 1/5*a + 2/5*b*(cosA+i*sinA) = (a/5+2/5*b*cosA) + i*2/5*b*sinA现在就套那个面积的条...