若f(x)和g(x)都是定义在实数集R上的函数,且方程x-f[g(x)]=0有实数解,则g[f(x)]不可能是(  ) A.x2+x−15 B.x2+x+15 C.x2−15 D.x2+15

问题描述:

若f(x)和g(x)都是定义在实数集R上的函数,且方程x-f[g(x)]=0有实数解,则g[f(x)]不可能是(  )
A. x2+x−

1
5

B. x2+x+
1
5

C. x2
1
5

D. x2+
1
5

∵x-f[g(x)]=0得f[g(x)]=x,
所以g[f(g(x))]=g(x),
得g[f(x)]=x,
所以f[g(x)]=x与g[f(x)]=x是等价的,
即f[g(x)]=x有解g[f(x)]=x也有解,也就是说有解的都是可能的
题目要我们选不可能的,所以只能选无解的那个B.
故选B.