已知数列an的前n项和为sn,a1=2,nan+1=sn+n(n+1),设bn=sn/2n,bn小于等于t,
问题描述:
已知数列an的前n项和为sn,a1=2,nan+1=sn+n(n+1),设bn=sn/2n,bn小于等于t,
答
na(n+1)=n[S(n+1)-Sn]=Sn+n(n+1),即nS(n+1)=(n+1)Sn+n(n+1),两边除以n(n+1),得:[S(n+1)]/(n+1)-[Sn]/n=1=常数,则{(Sn)/n}是以(S1)/1=a1=2为首项、以d=1为公差的等差数列,得:(Sn)/n=n+1,所以Sn=n(n+1),bn=(Sn)/(2n)=(n+1)/2,……