如图,(1)在△ABC中,AB=AC,AB的垂直平分线交AB于N,交BC的延长线于M,∠A=40°,求∠NMB的大小.

问题描述:

如图,(1)在△ABC中,AB=AC,AB的垂直平分线交AB于N,交BC的延长线于M,∠A=40°,求∠NMB的大小.
(2)如果将(1)中的∠A的度数改为70°,其余条件不变,请推测∠NMB的度数.
(3)观察(1),(2)的结论,你发现什么规律,请写出你发现的规律.

分析:(1)根据等腰三角形的两个底角相等和直角三角形的关系,求出∠M=20°;
(2)直接用(1)中同样的方法可求得∠M=40°;
(3)用一般的式子把求∠M的过程写下来即为规律;
(1)∵∠B=1/2(180°-∠A)=70°
∴∠M=20°
(2)同理得∠M=35°
(3)规律是:∠M的大小为∠A大小的一半,
证明:设∠A=α,
则有∠B=1/2(180°-α)∠M
=90°-1/2(180°-α)
=1/2 α