已知连续函数f(x)在区间[a,b]上单调,且f(a)f(b)<0,则方程f(x)=0在区间[a,b]内( ) A.至少有一实根 B.至多有一实根 C.没有实根 D.必有唯一的实根
问题描述:
已知连续函数f(x)在区间[a,b]上单调,且f(a)f(b)<0,则方程f(x)=0在区间[a,b]内( )
A. 至少有一实根
B. 至多有一实根
C. 没有实根
D. 必有唯一的实根
答
∵f(a)f(b)<0
∴连续函数在区间[a,b]上至少有一个零点
又∵函数f(x)在区间[a,b]上单调
∴函数f(x)在区间[a,b]上至多有一个零点
故连续函数f(x)在区间[a,b]上有且只有一个零点
即方程f(x)=0在区间[a,b]内必有唯一的实根
故选D