求证:顺次连结矩形四边中点所得的四边形是菱形
问题描述:
求证:顺次连结矩形四边中点所得的四边形是菱形
要求写出已知、求证和证明
答
已知:矩形ABCD,E、F、G、H分别是AB、BC、CD、AD中点.
求证:四边形EFGH是菱形.
证明:
∵E是AB中点
F是BC中点
∴EF‖AC
EF=1/2AC
∵H是AD中点
G是CD中点
∴HG‖AC
HG=1/2AC
∵EF‖AC
HG‖AC
∴EF‖HG
∵EF=1/2AC
HG=1/2AC
∴EF=HG
在四边形EFGH中
∵EF‖HG
EF=HG
∴四边形EFGH是平行四边形
∵H是AD中点
E是AB中点
∴HE=1/2BD
∵矩形ABCD
∴AC=BD
∴1/2AC=1/2BD
∵HG=1/2AC
HE=1/2BD
1/2AC=1/2BD
∴HG=HE
在平行四边形EFGH中
∵HG=HE
∴平行四边形EFGH是菱形