已知抛物线Y=X的平方+2mx+m的平方-1/2m-3/2
问题描述:
已知抛物线Y=X的平方+2mx+m的平方-1/2m-3/2
求当m取任意实数时,此抛物线的顶点能否在直线y=1/2x-3/2上
求若直线y=1/2x+m与此抛物线没有交点,求m的取值范围
答
y=x^2+2mx+m^2-(m/2)-(3/2)=(x+m)^2-(m/2)-(3/2)
抛物线顶点C[-m,-(m/2)-(3/2)]
y=(x/2)-(3/2)
x=-m
y=-(m/2)-(3/2)
当m取任意实数时,此抛物线的顶点在直线y=(x/2)-(3/2)上
直线y=(x/2)+m与此抛物线没有交点,则
y=(x/2)+m
y=x^2+2mx+m^2-(m/2)-(3/2)
x^2+2mx+m^2-(m/2)-(3/2)=(x/2)+m
x^2+(2m-1/2)x+m^2-3m/2-3/2=0的判别式△