若P是椭圆x^2/a^2+y^2/b^2=1(a>b>0)上一点,F1、F2是左、右焦点,设角F1PF2=θ,求证S△F1PF2=(b^2)*tan(θ/2

问题描述:

若P是椭圆x^2/a^2+y^2/b^2=1(a>b>0)上一点,F1、F2是左、右焦点,设角F1PF2=θ,求证S△F1PF2=(b^2)*tan(θ/2

∠F1PF2=θ记|F1P|=x |F2P|=y |F1F2|=z由椭圆的定义x+y=2az=2c由余弦定理x^2+y^2-2xycosθ=z^2(x+y)^2-2xy(cosθ+1)=z^24a^2-2xy(cosθ+1)=4c^2xy=2(a^2-c^2)/(cosθ+1)xy=2b^2/(cosθ+1)S=1/2*xy*sinθ=1/2*[2b^2/(...