等差数列{An},项数为2n,为何 S奇/S偶 = (An+1)/An?

问题描述:

等差数列{An},项数为2n,为何 S奇/S偶 = (An+1)/An?

S奇=A1+A3+A5+……+A(2n-3)+A(2n-1)S偶=A2+A4+A6+……+A(2n-2)+A2n如果n为奇数A1+A(2n-1)=A3+A(2n-3)=……=A(n-2)+A(n+2)=2AnA2+A2n=A4+A(2n-2)=……=A(n-1)+A(n+3)=2A(n+1)S奇=nAnS偶=nA(n+1)S奇/S偶=An/A(n+1)如果...