f(x)=1+f(1/x)*log2^x,那么f(2)等于多少?
问题描述:
f(x)=1+f(1/x)*log2^x,那么f(2)等于多少?
答
f(2)=1+f(1/2)*log2^2 =1+f(1/2) 又f(1/2)=1+f(2)*log2^(1/2) =1-f(2) 则f(2)=1,f(1/2)=0
f(x)=1+f(1/x)*log2^x,那么f(2)等于多少?
f(2)=1+f(1/2)*log2^2 =1+f(1/2) 又f(1/2)=1+f(2)*log2^(1/2) =1-f(2) 则f(2)=1,f(1/2)=0