已知函数fx=2sin(2x+π/3)+2
问题描述:
已知函数fx=2sin(2x+π/3)+2
(1)求函数fx的对称轴方程
(2)当x∈(0,π/2)时,若函数g(x)=f(x)+m有零点,求m取值范围
(3)若f(x0)=2/5,x0∈(π/4,π/2),求sin(2x0)
答
(1)f(x)=2sin(2x+π/3)+2由2x+π/3=kπ+π/2,k∈Z得2x=kπ+π/6,k∈Z对称轴方程为x=kπ/2+π/12,k∈Z(2)g(x)=f(x)+m=2sin(2x+π/3)+2+m当x∈(0,π/2)时,g(x)有零点即存在x∈(0,π/2)使得2sin(2x+π/3)+2+m=0...“sin[(2x0+π/3)-π/3]=sin(2x0+π3)cosπ/3-cos(2x0+π/3)sinπ/3”这是怎样得来的?两角差正弦公式:sin(α-β)=sinαcosβ-cosαsinβ α=2x0+π/3,β=π/3∴sin[(2x0+π/3)-π/3]=sin(2x0+π3)cosπ/3-cos(2x0+π/3)sinπ/3”