若a、b属于正实数,且a+ab+2b=30,求ab的最大值及此时a、b的取值
问题描述:
若a、b属于正实数,且a+ab+2b=30,求ab的最大值及此时a、b的取值
答
ab + a + 2b + 2 = (a + 2) (b + 1) = 32
① (a + 2) (2b + 2) = 64
所以:
64 = (a + 2) (2b + 2)
= 16-4 = 12
而(a + 2b) + ab = 30
所以:ab = 30 - (a+2b)