罗尔定理的题 FX在区间(0,1)上连续可导,F(0)=F(1)=0,F(1/2)=1,证明存在T属于(0,1)满足F(T)的导数=1

问题描述:

罗尔定理的题 FX在区间(0,1)上连续可导,F(0)=F(1)=0,F(1/2)=1,证明存在T属于(0,1)满足F(T)的导数=1

由拉格朗日中值定理知:存在x1∈(0,1/2),f'(x1)=[f(1/2)-f(0)]/(1/2)=2 x2∈(1/2,1),f'(x2)=[f(1)-f(1/2)]/(1/2)=-2 由导函数的中间值定理可得,存在t∈(x1,x2),f'(t)=1 导函数取中间值定理及达布定理.其证明可以百度.