已知等比数列an项均为不等于1的正数,数列bn满足bn=lgan,b3=18,b6=12,则数列bn前N项和的最大值为?

问题描述:

已知等比数列an项均为不等于1的正数,数列bn满足bn=lgan,b3=18,b6=12,则数列bn前N项和的最大值为?

132 解;bn=lgan,所以an=10^bn,因为{an}为等比数列,b3=18,b6=12,代入an=10^bn,得a3=10^18,a6=10^12,用a6/a3,得公比q^3=1/(10^6),q=1/100再a3=10^18,得a3=a1·q^2,得a1=10^22得an=a1·(1/100)^(n-1)所以b1+b2+……+bn...