设函数y=f(x)由方程e2x+y-cos(xy)=e-1所确定,则曲线y=f(x)在点(0,1)处的法线方程为_.

问题描述:

设函数y=f(x)由方程e2x+y-cos(xy)=e-1所确定,则曲线y=f(x)在点(0,1)处的法线方程为______.

由题设,将e2x+y-cos(xy)=e-1两边对x求导,得
e2x+y•[2+y′]+sin(xy)•[y+xy']=0
将x=0代入原方程得y=1,
再将x=0,y=1代入上式,得
y'|x=0=-2.因此所求法线方程为
y−1=

1
2
(x−0)
即 x-2y+2=0.