如图,已知三角形ABC中,角A=90°,AB=AC,D为BC的中点若E,F为AB,AC上的点,且BE=AF求证三角形DEF是等要直角三

问题描述:

如图,已知三角形ABC中,角A=90°,AB=AC,D为BC的中点若E,F为AB,AC上的点,且BE=AF求证三角形DEF是等要直角三
如E,F分别为AB.CA延长线上的点,仍有BE=AF,其他条件不变,那么.,三角形DEF是否仍为等腰直角三角形.

短发过xia,
证明:
(1)连结AD
∵AB=AC ∠BAC=90° D为BC的中点
∴AD⊥BC BD=AD
∴∠B=∠DAC=45°
又BE=AF
∴△BDE≌△ADF (SAS)
∴ED=FD ∠BDE=∠ADF
∴∠EDF=∠EDA+∠ADF=∠EDA+∠BDE=∠BDA=90°
∴△DEF为等腰直角三角形
(2连结AD
∵AB=AC ∠BAC=90° D为BC的中点
∴AD⊥BC BD=AD
∴∠B=∠DAC=45°
∴∠DAF=∠DBE=180°-45°=135°
又BE=AF
∴△BDE≌△ADF (SAS)
∴ED=FD ∠BDE=∠ADF
∴∠EDF=∠FDB+∠BDE=∠BDE+∠ADF=∠BDA=90°
∴△DEF为等腰直角三角形)