设数列{An}的前n项的和为Sn已知A1=a A(n+1)=Sn+3^n (1)设Bn=Sn-3^n 求数列{Bn}的通项公式?
问题描述:
设数列{An}的前n项的和为Sn已知A1=a A(n+1)=Sn+3^n (1)设Bn=Sn-3^n 求数列{Bn}的通项公式?
答
a(n+1)=S(n+1)-Sn=Sn+3^n 所以 S(n+1)=2Sn+3^n 将bn的表达式带入:b(n+1)=S(n+1)-3^(n+1)=2Sn+3^n -3^(n+1) =2(Sn-2-3^n) =2bn 所以bn为公比为2的等比数列,首项b1=S1-3=a-3.所以bn=(a-3)*2^(n-1) 跟你说,我郁闷的...