如图:AB=AD,∠ABC=∠ADC,EF过点C,BE⊥EF于E,DF⊥EF于F,BE=DF.求证:CE=CF.

问题描述:

如图:AB=AD,∠ABC=∠ADC,EF过点C,BE⊥EF于E,DF⊥EF于F,BE=DF.求证:CE=CF.

证明:连接BD,
∵AB=AC,
∴∠ABD=∠ADB,
又∵∠ABC=∠ADC,
∴∠ABC-∠ABD=∠ADC-∠ADB,
∴∠DBC=∠BDC,
∴BC=CD,
在Rt△BCE和Rt△DCF中,

BC=CD
BE=DF

∴Rt△BCERt≌Rt△DCF(HL),
∴EC=CF.