已知函数fx=cos²(x-30°)-sin²x 若对于任意的x∈【0,π/2】,都有f(x)≤c,求实数c的范围
问题描述:
已知函数fx=cos²(x-30°)-sin²x 若对于任意的x∈【0,π/2】,都有f(x)≤c,求实数c的范围
答
f(x)=cos²(x-30°)-sin²x
=1/2[1+cos(2x-60º)]-1/2(1-cos2x)
=1/2(cos2xcos60º+sin2xsin60º)+1/2cos2x
=√3/4sin2x+3/4cos2x
=√3/2(1/2sin2x+√3/2cos2x)
=√3/2sin(2x+π/3)
∵x∈【0,π/2】
∴2x∈[0,π]
∴2x+π/3∈[π/3,4π/3]
∴sin(2x+π/3)∈[-√3/2,1]
∴f(x)∈[-3/4,√3/2]
∵对于任意的x∈【0,π/2】,都有f(x)≤c
∴f(x)max=√3/2≤c
∴实数c的范围是c≥√3/2