函数y=sin(x+π/6)+cosx的最大值是多少?

问题描述:

函数y=sin(x+π/6)+cosx的最大值是多少?

y=sin(x+π/6)+cosx
=sinxcosπ/6+cosxsinπ/6+cosx
=√3/2sinx+1/2cosx+cosx
=√3/2sinx+3/2cosx
=√3(1/2sinx+√3/2cosx)
=√3(sinxcosπ/3+cosxsinπ/3)
=√3sin(x+π/3)