如图,已知Rt三角形ABC中,角ABC=90°,以AB为直径作圆O交AC于D,过D作圆O的切线DE,交BC于E.求证:BE=CE
问题描述:
如图,已知Rt三角形ABC中,角ABC=90°,以AB为直径作圆O交AC于D,过D作圆O的切线DE,交BC于E.求证:BE=CE
答
取AB中点F,
则FD=FB,FD垂直DE
角FBD=角FDB,角A=角ADF
角FBE=角FDE=90度
1 故角EBD=角EDB 故BE=DE
2 故角ADF+角DEC=90度,又角A+角C=90度 故角EDC=角C 故ED=EC
故得证