若f(t)是连续函数且为奇函数,证明 f(t)dt是偶函数;若f(t)是连续函数且为偶函数,证明 f(t)dt是奇函数.

问题描述:

若f(t)是连续函数且为奇函数,证明 f(t)dt是偶函数;若f(t)是连续函数且为偶函数,证明 f(t)dt是奇函数.

若f(t)是连续函数且为奇函数
f(-t)d(-t)=-f(t)*(-dt)=f(t)dt
即f(t)dt是偶函数
若f(t)是连续函数且为偶函数,
f(-t)d(-t)=f(t)*(-dt)=-f(t)dt
即 f(t)dt是奇函数.