已知A(1/2,0),B是圆F(x-1/2)^2+y^2=4上的一个懂点,线段AB的垂直平分线交BF于P点 求动点P的轨迹方程
问题描述:
已知A(1/2,0),B是圆F(x-1/2)^2+y^2=4上的一个懂点,线段AB的垂直平分线交BF于P点 求动点P的轨迹方程
答
这是2005年高考重庆卷的题
垂直平分线上的点到A,B的距离相等,PA=PB
半径=2=BF=PB+PF=PA+PF
可见P点到(-1/2,0)和(1/2,0)的距离和为定值2,P轨迹是椭圆
c=1/2,2a=2,则b^2=3/4
方程是:x^2+y^2/(3/4)=1