设A,B是两个定点,且|AB|=2,动点M到A点的距离是4,线段MB的垂直平分线l交MA于点P,求动点P的轨迹方程.

问题描述:

设A,B是两个定点,且|AB|=2,动点M到A点的距离是4,线段MB的垂直平分线l交MA于点P,求动点P的轨迹方程.

以线段AB的中点为坐标原点,
直线AB为x轴,线段AB的中点为原点,建立直角坐标系.
由垂直平分线知,PB=PM
故PA+PB=PA+PM=AM=4,
即P点的轨迹为以A、B为焦点的椭圆,中心为(0,0),
故P点的方程为

x2
4
y2
3
=1.