如图,在Rt△ABC中,AB=AC,∠BAC=90°,BD平分∠ABC交AC于点D,CE⊥BD交BD的延长线于点E.
问题描述:
如图,在Rt△ABC中,AB=AC,∠BAC=90°,BD平分∠ABC交AC于点D,CE⊥BD交BD的延长线于点E.
求证:BD=2CE
答
证明:延长CE交BA的延长线于F
因为∠ABE=∠ACF(等角的
相等)
AB=AC
∠BAC=∠CAF=90
所以△ABD≌△ACF
所以BD=CF
因为BD既是角B的平分线也是CF边的高
所以△CBF是等腰三角形
CE=1/2CF
又BD=CF
所以BD=2CE