四边形abcd的两组对边延长线分别相交于点E,F,∠AED的平分线与∠AFB的平分线交于点G,求证:∠EGF=1\2(A+∠BCD)
问题描述:
四边形abcd的两组对边延长线分别相交于点E,F,∠AED的平分线与∠AFB的平分线交于点G,求证:∠EGF=1\2(A+∠BCD)
答
证明:设EG与BC交于点H∵∠AED=180-(∠A+∠ADC),EG平分∠AED∴∠AEG=∠AED/2=90-(∠A+∠ADC)/2∵∠AFB=180-(∠A+∠ABC),FG平分∠AFB∴∠BFG=90-(∠A+∠ABC)/2∵∠CHE=∠BFG+∠EGF,∠CHE=∠AEG+∠CBE...