如图所示,AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使DC=BD,连接AC,过点D作DE⊥AC于E. (1)求证:AB=AC;(2)求证:DE为⊙O的切线.

问题描述:

如图所示,AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使DC=BD,连接AC,过点D作DE⊥AC于E.

(1)求证:AB=AC;(2)求证:DE为⊙O的切线.

证明:(1)连接AD;
∵AB是⊙O的直径,
∴∠ADB=90°.
又∵DC=BD,
∴AD是BC的中垂线.
∴AB=AC.
(2)连接OD;
∵OA=OB,CD=BD,
∴OD∥AC.
∴∠0DE=∠CED.
又∵DE⊥AC,
∴∠CED=90°.
∴∠ODE=90°,即OD⊥DE.
∴DE是⊙O的切线.