已知P是圆C:x^2+y^2=4上的一个动点,定点A(4,0),M为AP的中点,求点M的轨迹方程.

问题描述:

已知P是圆C:x^2+y^2=4上的一个动点,定点A(4,0),M为AP的中点,求点M的轨迹方程.

设M的坐标为(x,y),P的坐标为(m,n)
(m-4)/2=x ;(n-0)/2=y
可得 m=2x+4 ;n=2y
因为P是圆C上的点,所以m^2+n^2=4 即(2x+4)^2+(2y)^2=4
点M的轨迹方程为:(x+2)^2+y^2=1