已知f(x)=log3[(x^2+ax+b)/x],x∈(0,+无穷),是否存在实数a,b,使f(x)同时满足下列三个条件.

问题描述:

已知f(x)=log3[(x^2+ax+b)/x],x∈(0,+无穷),是否存在实数a,b,使f(x)同时满足下列三个条件.
①在(0,1]上是减函数,②在[1,正无穷)上是增函数,③f(x)的最小值是1?若存在,求出a,b的值,若不存在,请说明理由.

f(x) = log3[(x^2+ax+b)/x]
f’(x) = [(x^2+ax+b)/x]' /{ [(x^2+ax+b)/x] log3}
= { [x*(2x+a)-(x^2+ax+b)*1]/x^2} / { [(x^2+ax+b)/x] log3}
= { [2x^2+ax-x^2-ax-b]} / { x^2[(x^2+ax+b)/x] log3}
= (x^2-b) / { x(x^2+ax+b) log3}
∵①在(0,1]上是减函数,②在[1,正无穷)上是增函数,③f(x)的最小值是1
∴f‘(1)=0,f(1)=1
∴ (1-b) / { (1+a+b) log3 } = 0,log3(1+a+b) = 1
∴a=1,b=1