已知:在三角形ABC中,角A等于90度,AB=AC,D为bc的中点.E.F分别为AB,AC上的点,且BE=AF,求证三角形DEF是

问题描述:

已知:在三角形ABC中,角A等于90度,AB=AC,D为bc的中点.E.F分别为AB,AC上的点,且BE=AF,求证三角形DEF是
腰直角三角形.

证明:
连接AD
∵∠A=90°,AB=AC,D为BC的中点
∴AD⊥BC,∠CAD=∠BAD=∠B=45°
∴AD=BD,
∵BE=AF
∴△DBE≌⊿DAF
∴ED=DF,∠ADF=∠BDE,
∴∠EDF=∠ADB=90º
∴三角形DEF是等腰直角三角形
原题得证