已知数列{an}的前n项和为Sn,且an=n2的n次方,则Sn=

问题描述:

已知数列{an}的前n项和为Sn,且an=n2的n次方,则Sn=

Sn=1*2+2*2^2+3*2^3+.+n*2^n ,
两边同乘以 2 得 2Sn=1*2^2+2*2^3+3*2^4+.+(n-1)*2^n+n*2^(n+1) ,
两式相减,得
Sn=2Sn-Sn=-1*2-2^2-2^3-.-2^n+n*2^(n+1)
= -[2^(n+1)-2]+n*2^(n+1)
=2+(n-1)*2^(n+1) .