已知函数f(X)=(1+1/tanx)sin^2x+msin(x+π/4)sin(x-π/4) 当tana=2时,f(a)=3/5,求m的值
问题描述:
已知函数f(X)=(1+1/tanx)sin^2x+msin(x+π/4)sin(x-π/4) 当tana=2时,f(a)=3/5,求m的值
答
将函数f(X)=(1+1/tanx)sin^2x+msin(x+π/4)sin(x-π/4) 化简得:
=(1+cosx/sinx)*2sinxcosx+m(sinxcosπ/4+cosxsinπ/4)(sinxcosπ/4-cosxsinπ/4)
=2sinxcosx+2(cosx)^2+1/2[(sinx)^2-(cosx)^2]m
由tana=2得
sina=2cosa
所以:f(a)=(sina)^2+2(cosa)^2+1/2*3m(cosa)^2
=1+(cosa)^2+3m/2*(cosa)^2
=3/5
所以得:3m/2*(cosa)^2+2/5[(cosa)^2+(sina)^2]+(cosa)^2=0
3m/2*(cosa)^2+7/5*(cosa)^2+2/5*(sina)^2=0
因为tana=2
将上式同除于(cosa)^2得((cosa)^2由tana=2知不会为零):
3m/2+7/5+2/5*4=0
所以:m=-2