根据下列条件求函数f(x)=sin(x+∏/4)+2sin(x-∏/4)-scos2x+3cos(x+3∏/4)的值 (1)x=∏/4 (2)x=3∏/4

问题描述:

根据下列条件求函数f(x)=sin(x+∏/4)+2sin(x-∏/4)-scos2x+3cos(x+3∏/4)的值 (1)x=∏/4 (2)x=3∏/4
任意角的三角函数计算的

(1)f(x)=sin(x+π/4)+2sin(x-π/4)-cos2x+3cos(x+3π/4)=sin(π/2)+2sin(0)-cos(π/2)+3cos(π)
=1+0-0-3=-2
(2)f(x)=sin(x+π/4)+2sin(x-π/4)-cos2x+3cos(x+3π/4)=sin(π)+2sin(π/2)-cos(3π/2)+3cos(3π/2)
=0+2*1-0+0=2