双曲线16x^2-9y^2=144左、右焦点分别为F1F2,点P在双曲线上且∠F1PF2=60°,求△F1PF2面积

问题描述:

双曲线16x^2-9y^2=144左、右焦点分别为F1F2,点P在双曲线上且∠F1PF2=60°,求△F1PF2面积

c^2=a^2+b^2=25所以 F1(-5,0),F2(5,0)设P(Xp,Yp)Yp/(Xp-5)=[tan60+Yp/(Xp+5)]/[1-tan60*Yp/(Xp+5)]整理得:Xp^2+(Yp-5/√3)^2=100/3所以 |Yp|=16√3/5或者 Yp/(Xp+5)=[tan60+Yp/(Xp-5)]/[1-tan60*Yp/(Xp-5)]整理得:...