已知x,y,z为正实数,求3(x^2+y^2+z^2)+2/x+y+z的最小值.好像要用柯西不等式做.

问题描述:

已知x,y,z为正实数,求3(x^2+y^2+z^2)+2/x+y+z的最小值.好像要用柯西不等式做.

若x、y、z∈R+,则
依三元均值不等式和柯西不等式得:
3(x²+y²+z²)+2/(x+y+z)
=(1²+1²+1²)(x²+y²+z²)+2/(x+y+z)
≥(x+y+z)²+1/(x+y+z)+1/(x+y+z)
≥3·[(x+y+z)²·1/(x+y+z)·1/(x+y+z)]^(1/3)
=3.
以上两不等号同时取等时,易得x=y=z=1/3.
∴当x=y=z=1/3时,所求最小值为:3.