f(x)=px-q/x-2lnx,f(x)=qe-p/e-2,(e为自然对数的底数)
问题描述:
f(x)=px-q/x-2lnx,f(x)=qe-p/e-2,(e为自然对数的底数)
(1)求p与q的关系
(2)若f(x)在其定义域内为单调函数,求p范围
(3)设g(x)=2e/x ,若在[1,e]上至少存在一点X0,使f(X0)>g(X0)成立 ,求p范围
答
(1)令x=e 所以p=q
(2)f(x)=p(x^2-1)/x -2lnx 2lnx为减 所以要保证函数为单调所以前面的函数要也要为减 .所以01,p