已知数列{an}中,a1=8,a4=2,且满足an+2-2an+1+an=0 (n∈N),求数列{an}的通项公式;设Sn=|a1|+|a2

问题描述:

已知数列{an}中,a1=8,a4=2,且满足an+2-2an+1+an=0 (n∈N),求数列{an}的通项公式;设Sn=|a1|+|a2
+...+|an|,求Sn ;设bn=1/n(12-an),Tn=b1+b2+...+bn(n∈N)是否存在最大整数m,使得对任意n∈N,均有Tn>m/32成立?若存在,求出m,若不存在,请说明理由.

(1)an+2-2an+1+an=0 {an}是等差数列
a1=8,a4=2 d=-2 an=10-2n
(2)Sn=10-2+10-4+10-6+...+10-2n
=10n-n^2-n
=9n-n^2
(3)Tn裂项求和 解出Tn 找到Tn最小值 所以m最大为10