某童装厂,现有甲种布料70米,乙种布料52米,现计划用这两种布料生产L、M两种型号的童装共80套.已知做一套L型号的童装需用甲种布料0.6米,乙种布料0.9米,可获利45元,做一套M型号的童
问题描述:
某童装厂,现有甲种布料70米,乙种布料52米,现计划用这两种布料生产L、M两种型号的童装共80套.已知做一套L型号的童装需用甲种布料0.6米,乙种布料0.9米,可获利45元,做一套M型号的童装需用甲种布料1.1米,乙种布料0.4米,可获利30元,设生产L型号的童装套数为x(套),用这些布料生产两种型号的童装所获得利润为y(元).
(1)写出y(元)关于x(套)的代数式,并求出x的取值范围.
(2)该厂生产这批童装中,当L型号的童装为多少套时,能使该厂的利润最大?最大利润是多少?
答
(1)设生产L型号的时装x套,那么生产M型号的时装为(80-x)套,∵生产一套L型号的童装可以获利45元,生产一套M型号的童装可以获利30元,y=45x+30(80-x)即y=15x+2400;需甲布料0.6x+1.1(80-x)≤70,需乙布料0.9x...