在△ABC中,已知b•cosC+c•cosB=3a•cosB,其中a、b、c分别为角A、B、C的对边.则cosB值为(  ) A.13 B.−13 C.223 D.−223

问题描述:

在△ABC中,已知b•cosC+c•cosB=3a•cosB,其中a、b、c分别为角A、B、C的对边.则cosB值为(  )
A.

1
3

B.
1
3

C.
2
2
3

D.
2
2
3

因为b•cosC+c•cosB=3a•cosB,由正弦定理可知,sinBcosC+sinCcosB=3sinAcosB,
即sin(B+C)=sinA=3sinAcosB,
所以cosB=

1
3

故选A.