设f(x)在[a,b]上连续,x1,x2,x3.xn∈[a,b],且t1+t2+t3+.+tn=1,ti>0,i=1,2,3...,n.证明:存在x0∈[a,b],使得f(x0)=t1f(x1) + t2f(x2) + .+ tnf(
问题描述:
设f(x)在[a,b]上连续,x1,x2,x3.xn∈[a,b],且t1+t2+t3+.+tn=1,ti>0,i=1,2,3...,n.证明:存在x0∈[a,b],使得f(x0)=t1f(x1) + t2f(x2) + .+ tnf(xn).
利用归结原则证明:lim n→无穷 (1+1/n+1/n^2)^n=e. 在线等求解答.
答
2.令f(x)=(1+x+x²)^(1/x),则lim{x→0}f(x)=lim{x→0}[(1+x+x²)^(1/x)]=lim{x→0}e^[1/x*ln(1+x+x²)]=e^[lim{x→0}1/x*ln(1+x+x²)]=e^[lim{x→0}1/x*(x+x²)] 当a→0时,ln(1+a)~a=e^[lim{x→...