水坝的横断面为梯形ABCD,迎水坡BC的坡角B为30°,背水坡AD坡比为1:1.5,坝顶宽DC=2米,坝高4米,求:(1)坝底AB的长; (2)迎水坡BC的坡比.
问题描述:
水坝的横断面为梯形ABCD,迎水坡BC的坡角B为30°,背水坡AD坡比为1:1.5,坝顶宽DC=2米,坝高4米,求:
(1)坝底AB的长;
(2)迎水坡BC的坡比.
答
知识点:此题主要考查了坡度与坡角问题,通过构造直角三角形,矩形,利用直角三角形的性质和矩形的性质,锐角三角函数的概念求解是解题关键.
(1)如图,作CF⊥AB,DE⊥AB,垂足分别为点F,E.
∴四边形CDEF是矩形.
∴CF=DE=4,EF=CD=2.
∴BF=
=4 FC tan30°
.AE=1.5DE=6.
3
∴AB=BF+EF+AE=4
+2+6=4
3
+8;.
3
(2)∵CF=4,BF=4
,
3
∴迎水坡BC的坡比为:
=CF BF
=4 4
3
.
3
3
答案解析:(1)作出两条高,得到两个直角三角形及一个矩形.利用勾股定理及坡比得到BF,AE长.
(2)利用坡比的定义,即可得出迎水坡BC的坡比的值.
考试点:解直角三角形的应用-坡度坡角问题;梯形.
知识点:此题主要考查了坡度与坡角问题,通过构造直角三角形,矩形,利用直角三角形的性质和矩形的性质,锐角三角函数的概念求解是解题关键.