设函数f(x)=(cosx)^2+asinx-a/4-1/2,当a取何值时,方程f(x)=(1+a)sinx在[0,2π)上有两解?
问题描述:
设函数f(x)=(cosx)^2+asinx-a/4-1/2,当a取何值时,方程f(x)=(1+a)sinx在[0,2π)上有两解?
答
f(x)=(cosx)^2+asinx-a/4-1/2=1-(sinx)^2+asinx--a/4-1/2=(1+a)sinx
(sinx)^2+sinx+a/4-1/2=0,(sinx+1/2)^2+a/4-3/4=0.
(sinx+1/2)^2=(3-a)/4.
(3-a)/4>=0,a“且”应改为“或”吧