三棱锥p-ABC中,三个侧面PAB.PBC.PCA两两垂直且PA+PB=4,PC=3,则此三棱锥体积的最大值为?

问题描述:

三棱锥p-ABC中,三个侧面PAB.PBC.PCA两两垂直且PA+PB=4,PC=3,则此三棱锥体积的最大值为?

三个侧面PAB.PBC.PCA两两垂直
可联想到长方体
这样便可画出图形,所以可将PC看作高,直角三角形PAB看作底
故体积为V=1/3*PC*[1/2*(PA*PB)]
由均值不等式知最大值在PA=PB时取到
所以为2