已知如图,P是等边三角形ABC的BC边上的任意一点,过P分别作AB、AC的垂线PE和PD,垂足分别为E、D 求证:三角

问题描述:

已知如图,P是等边三角形ABC的BC边上的任意一点,过P分别作AB、AC的垂线PE和PD,垂足分别为E、D 求证:三角
AED的周长与四边形EBCD的周长相等

证明:因为等边三角形ABC中,PE⊥AB于E,所以∠EPB=30°,所以BE=BP/2,同理CD=PC/2,所以BE+CD=BP/2+PC/2=(BP+PC)/2=BC/2,所以AE+AD=(AB-BE)+(AC-AD)=AB+AC-(BE+AD)=AB+aC-BC/2=3AB/2,所以三角形AED的周长=AE+AD+DE=3AB/...