已知双曲线C的方程为y^2/a^2-x^2/b^2=1,离心率e=根号5/2顶点到渐近线的距离为根号5/2,顶点到渐近线的距离
问题描述:
已知双曲线C的方程为y^2/a^2-x^2/b^2=1,离心率e=根号5/2顶点到渐近线的距离为根号5/2,顶点到渐近线的距离
答
e=√5/2=c/a2c=√5a,c^2=5/4a^2=a^2+b^2∴b^2=1/4a^2∴b^2/a^2=1/4设顶点A(0,a),渐近线方程y=bx/a∴顶点到渐近线的距离是:(-a)的绝对值/√[(b/a)^2+1]=2/√5代入b^2/a^2=1/4得a^2=1,b^2=1/4∴双曲...